上肢控制和功能的丧失是中风后患者的不懈症状。这将使他们的日常生活活动施加艰辛。引入了超级机器人四肢(SRL)作为解决方案,以通过引入独立的新肢体来恢复损失的自由度(DOF)。 SRL中的致动系统可以分为刚性和软致动器。通过固有的安全性,成本和能源效率,软执行器已证明对刚性的刚性有利。但是,它们的刚度低,这危害了其准确性。可变的刚度执行器(VSA)是新开发的技术,已被证明可确保准确性和安全性。在本文中,我们介绍了基于可变刚度执行器的新型超级机器人肢。根据我们的知识,提议的概念验证SRL是第一个利用可变刚度执行器的人。开发的SRL将帮助中风后患者完成双重任务,例如用叉子和刀进食。说明了系统的建模,设计和实现。评估并通过预定义轨迹对其准确性进行了评估和验证。通过利用动量观察者进行碰撞检测来验证安全性,并通过软组织损伤测试评估了几种冲突后反应策略。通过标准的用户满意度问卷对援助过程进行定性验证。
translated by 谷歌翻译
Pure transformers have shown great potential for vision tasks recently. However, their accuracy in small or medium datasets is not satisfactory. Although some existing methods introduce a CNN as a teacher to guide the training process by distillation, the gap between teacher and student networks would lead to sub-optimal performance. In this work, we propose a new One-shot Vision transformer search framework with Online distillation, namely OVO. OVO samples sub-nets for both teacher and student networks for better distillation results. Benefiting from the online distillation, thousands of subnets in the supernet are well-trained without extra finetuning or retraining. In experiments, OVO-Ti achieves 73.32% top-1 accuracy on ImageNet and 75.2% on CIFAR-100, respectively.
translated by 谷歌翻译
Convex function constrained optimization has received growing research interests lately. For a special convex problem which has strongly convex function constraints, we develop a new accelerated primal-dual first-order method that obtains an $\Ocal(1/\sqrt{\vep})$ complexity bound, improving the $\Ocal(1/{\vep})$ result for the state-of-the-art first-order methods. The key ingredient to our development is some novel techniques to progressively estimate the strong convexity of the Lagrangian function, which enables adaptive step-size selection and faster convergence performance. In addition, we show that the complexity is further improvable in terms of the dependence on some problem parameter, via a restart scheme that calls the accelerated method repeatedly. As an application, we consider sparsity-inducing constrained optimization which has a separable convex objective and a strongly convex loss constraint. In addition to achieving fast convergence, we show that the restarted method can effectively identify the sparsity pattern (active-set) of the optimal solution in finite steps. To the best of our knowledge, this is the first active-set identification result for sparsity-inducing constrained optimization.
translated by 谷歌翻译
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and quantify the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analysis are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
translated by 谷歌翻译
Optical flow, which computes the apparent motion from a pair of video frames, is a critical tool for scene motion estimation. Correlation volume is the central component of optical flow computational neural models. It estimates the pairwise matching costs between cross-frame features, and is then used to decode optical flow. However, traditional correlation volume is frequently noisy, outlier-prone, and sensitive to motion blur. We observe that, although the recent RAFT algorithm also adopts the traditional correlation volume, its additional context encoder provides semantically representative features to the flow decoder, implicitly compensating for the deficiency of the correlation volume. However, the benefits of this context encoder has been barely discussed or exploited. In this paper, we first investigate the functionality of RAFT's context encoder, then propose a new Context Guided Correlation Volume (CGCV) via gating and lifting schemes. CGCV can be universally integrated with RAFT-based flow computation methods for enhanced performance, especially effective in the presence of motion blur, de-focus blur and atmospheric effects. By incorporating the proposed CGCV with previous Global Motion Aggregation (GMA) method, at a minor cost of 0.5% extra parameters, the rank of GMA is lifted by 23 places on KITTI 2015 Leader Board, and 3 places on Sintel Leader Board. Moreover, at a similar model size, our correlation volume achieves competitive or superior performance to state of the art peer supervised models that employ Transformers or Graph Reasoning, as verified by extensive experiments.
translated by 谷歌翻译
Image harmonization aims to produce visually harmonious composite images by adjusting the foreground appearance to be compatible with the background. When the composite image has photographic foreground and painterly background, the task is called painterly image harmonization. There are only few works on this task, which are either time-consuming or weak in generating well-harmonized results. In this work, we propose a novel painterly harmonization network consisting of a dual-domain generator and a dual-domain discriminator, which harmonizes the composite image in both spatial domain and frequency domain. The dual-domain generator performs harmonization by using AdaIn modules in the spatial domain and our proposed ResFFT modules in the frequency domain. The dual-domain discriminator attempts to distinguish the inharmonious patches based on the spatial feature and frequency feature of each patch, which can enhance the ability of generator in an adversarial manner. Extensive experiments on the benchmark dataset show the effectiveness of our method. Our code and model are available at https://github.com/bcmi/PHDNet-Painterly-Image-Harmonization.
translated by 谷歌翻译
Automatic defect detection for 3D printing processes, which shares many characteristics with change detection problems, is a vital step for quality control of 3D printed products. However, there are some critical challenges in the current state of practice. First, existing methods for computer vision-based process monitoring typically work well only under specific camera viewpoints and lighting situations, requiring expensive pre-processing, alignment, and camera setups. Second, many defect detection techniques are specific to pre-defined defect patterns and/or print schematics. In this work, we approach the automatic defect detection problem differently using a novel Semi-Siamese deep learning model that directly compares a reference schematic of the desired print and a camera image of the achieved print. The model then solves an image segmentation problem, identifying the locations of defects with respect to the reference frame. Unlike most change detection problems, our model is specially developed to handle images coming from different domains and is robust against perturbations in the imaging setup such as camera angle and illumination. Defect localization predictions were made in 2.75 seconds per layer using a standard MacBookPro, which is comparable to the typical tens of seconds or less for printing a single layer on an inkjet-based 3D printer, while achieving an F1-score of more than 0.9.
translated by 谷歌翻译
As a neural network compression technique, post-training quantization (PTQ) transforms a pre-trained model into a quantized model using a lower-precision data type. However, the prediction accuracy will decrease because of the quantization noise, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Many existing methods determine the quantization parameters by minimizing the distance between features before and after quantization. Using this distance as the metric to optimize the quantization parameters only considers local information. We analyze the problem of minimizing local metrics and indicate that it would not result in optimal quantization parameters. Furthermore, the quantized model suffers from overfitting due to the small number of calibration samples in PTQ. In this paper, we propose PD-Quant to solve the problems. PD-Quant uses the information of differences between network prediction before and after quantization to determine the quantization parameters. To mitigate the overfitting problem, PD-Quant adjusts the distribution of activations in PTQ. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.08% and RegNetX-600MF up to 40.92% in weight 2-bit activation 2-bit. The code will be released at https://github.com/hustvl/PD-Quant.
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译
Federated learning (FL) is a promising approach to enable the future Internet of vehicles consisting of intelligent connected vehicles (ICVs) with powerful sensing, computing and communication capabilities. We consider a base station (BS) coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner, in order to limit data traffic and privacy leakage. However, due to the mobility of vehicles, the connections between the BS and ICVs are short-lived, which affects the resource utilization of ICVs, and thus, the convergence speed of the training process. In this paper, we propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations, for better convergence performance of FL. We propose a mobility-aware optimization algorithm called MOB-FL, which aims at maximizing the resource utilization of ICVs under short-lived wireless connections, so as to increase the convergence speed. Simulation results based on the beam selection and the trajectory prediction tasks verify the effectiveness of the proposed solution.
translated by 谷歌翻译